Writing Neutral Formulas for Ionic Compounds

Neutral Compounds

- We need our compounds to be "electrically neutral"
 - Charges need to cancel out
 - Not always a 1:1 ratio!

Neutral Compounds

Write the lowest possible combo to get neutral

<u>Steps</u>

Eventually we should do this in our head! When asked to show work you will use this "crossing over" method.

- 1) Write cation first then anion
- 2) Write the charges with each symbol
- 3) The superscript of one atom, becomes the subscript of the other. Use the absolute value! This is "crossing over"
- 4) Reduce your subscripts to the lowest numbers possible while maintaining the correct ratio
- 5) You do not need to put the 1s for subscripts!
- 6) CAREFUL WITH POLYATOMIC IONS!

Barium Fluoride

BaF₂

Barium Nitrate

$Ba(NO_3)_2$

Ammonium Sulfate

$(NH_4)_2(SO_4)$

Iron(III) Chloride

FeCl₃

Aluminum Sulfide

Al_2S_3

Magnesium Carbonate

Magnesium Carbonate

$Mg(CO_3)$

$Zn(OH)_2$

Aluminum Phosphate

Aluminum Phosphate

$AI(PO_4)$

Working Backwards

Sometimes you are given the formula for a compound with a transition metal and you have to work backwards to figure out what charge the transition metal has. It's a number puzzle!

Fe²⁺ FeBr₂ Fe? Br1-

So...Fe²⁺ and Br¹⁻makes... Iron (II) Bromide

Cu1+ Cu₃N Cu? So...Cu¹⁺ and N³⁻ makes...

Copper (I) Nitride

YouTube Link to This Presentation

https://youtu.be/4N5GbLZrQJg